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Abstract

We present a straightforward method for the inclusion of quantum nuclear vibrational effects in
molecular dynamics calculations of shock Hugoniot temperatures. Using a Griineisen equation of
state and a quasi-harmonic approximation to the vibrational energies, we derive a simple, post-
processing method for calculation of the quantum corrected Hugoniot temperatures. We have used
our novel technique on ab initio simulations of both shock compressed water and methane. Our
results indicate significantly closer agreement with all available experimental temperature data for
these two systems. Our formalism and technique can be easily applied to a number of different
shock compressed molecular liquids or covalent solids, and has the potential to decrease the large

uncertainties inherent in many experimental Hugoniot temperature measurements of these systems.

PACS numbers:



I. INTRODUCTION

The equation of state of materials under extreme pressures and temperatures is of great
importance for understanding planetary interiors' as well as the chemical reactivity that oc-
curs under strong dynamic compression?. Diamond anvil cell experiments have successfully
accessed high pressure, low temperature states of matter?, as well as the lower pressure, high
temperature melting line of compressed materials?. Thermodynamic states that have been
inaccessible with diamond anvil cells have traditionally been achieved through shock com-
pression. Shock compression dynamically strains the sample in one spatial dimension while
simultaneously heating the sample®. However, measurement of shock Hugoniot (thermody-
namic end state) temperatures of many systems remains an unresolved issue®. Although
Raman scattering has been used at relatively low conditions’ (e. g., 12.1 GPa, 728 K), in
general pyrometric measurements are used to determine Hugoniot temperatures®®. In this
case, the measured intensity versus wavelength of radiation emitted from the shock com-
pressed sample is fit to a greybody Planckian distribution®, with the assumption that the
emissivity is independent of wavelength. Accurate temperatures remain difficult to deter-
mine due to large uncertainties in the calibration of these pyrometric measurements®. As
a result, experiments tend to rely on equation of state models for temperature data, which
have been shown to be inaccurate for some systems®. Molecular Dynamics (MD) simulations
provide an independent route to temperature determination, where material properties such
as the shock Hugoniot states are readily computed!® 4.

1516 and tight-binding simulations'® have been used successfully to

Empirical potentials
conduct MD simulations of the shock compression of several reactive systems. However,
accurate modeling of the breaking and forming of chemical bonds usually requires the use
of quantum theories such as Density Functional Theory (DFT), e. g., Ref.'". DFT has
been shown to accurately reproduce the high pressure-temperature phase boundaries®'® and
shock Hugoniot properties of many materials'>'*'?. However, DFT-MD simulations have
been shown to under-predict experimental Hugoniot temperatures for covalently bonded
materials by up to 20 — 30%'*'?. Molecular Dynamics simulations in general propagate
classical nuclear equations of motion, neglecting quantum zero-point and vibrational energy

effects. In particular, many covalently bonded systems have bond vibrational frequencies

that are only excited out of their quantum ground state at high ionic temperatures, such as



in liquid water, where the Debeye temperature is approximately 5000 K. Quantum effects at
ionic temperatures close to this value yield a true heat capacity of the system that is likely
significantly lower than the classical limit. As a result, the erroneous classical heat capacities
inherent in MD simulations of these materials could produce Hugoniot temperatures that are
too low. Determination of material equations of state could be greatly facilitated by a more
accurate MD temperature calculation methodology that includes these quantum effects.

In this work, we report a novel theoretical post-processing methodology for the inclusion
of quantum nuclear vibrational effects in the equation of state from MD simulations of
shock compression. Our technique is based upon computation of the velocity autocorrelation
function and is independent of the force-field used in the simulation. We test our theory by
computing quantum corrected Hugoniot temperatures from DFT-MD simulations of both
shock compressed water and methane. Our results show that our method yields improved
agreement with all available experimental data. We then analyze the power spectra from
both systems in order to create a simple physical picture for the magnitude of the quantum
correction at higher temperatures and pressures. Our calculations represent the first time
these quantum effects have been included in MD Hugoniot temperatures and have been

quantified, to date.

II. METHODS

In order to derive a method for calculation of the quantum nuclear vibration effects on the
Hugoniot temperature, we derive expressions relating the thermal energies for the classical
and quantum systems. We first approximate the equation of state of the true (quantum)
system by using a Griineisen equation of state® where the pressure and internal energy are
divided into “cold” and “thermal” parts, dependent on the system volume V" and temperature

T:

P(V,T) = PV + Pp(V,T) 2)

Here, the quantities E. and P, correspond to the cold components of the internal energy

and pressure, respectively, which are independent of temperature. Er(V,T) corresponds to
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the thermal component of the internal energy. The thermal component of the pressure is
defined as Pr = I'(V)Erp(V,T)/V, where I'(V) is the dimensionless Griineisen coefficient,
defined as ['(V) = —0Inv/0InV. Here, v is the average vibron frequency. The cold and
thermal portions of the internal energy can be written in terms of their electronic (el) and

ionic (i) components:

E(V) = EX V) + E(V) (3)
Er(V) = Ep(V.T) + EF(V.T). (4)

For this work, our MD simulations are all in the electronic ground-state, i. e., ES(V),
which allows us to neglect electronic contributions to the thermal energy (ES(V,T) = 0).
Regardless, we include EZ(V,T) in our formalism, although our final expression for the
difference between the quantum and classical thermal energy will depend exclusively on the
ionic component.

In first principles Molecular Dynamics, the ions are treated classically, and we denote the

equation of state for the classical system with lower case letters:

e(Vit) = e(V) +er(V, 1) (5)
p(Vit) = pe(V) + T(V)er(V,)/V, (6)

where e, p, and t represent the classical internal energy, pressure and temperature, re-
spectively, we have substituted in the definition of the thermal component of the pressure in
Eqn. 6, and I'(V) is the same Griineisen coefficient, mentioned above. Here, the volumes of
the quantum and classical systems are constrained to be the same. For the classical system

the cold energy is entirely electronic, viz.,

ce(V) = EZ(V). (7)

Inclusion of electronic thermal effects yields the following for the classical thermal energy:

er(V.t) = ep(V.t) + B{(V.T). (8)

We now assume that the vibrational density of states and electronic energies (E€ and

E%) are the same in both systems. Consequently, the Griineisen coefficients are also the



same for both classical and quantum systems. We constrain both systems to have the same
initial pressure Py and temperature Ty. We ignore the contribution of zero-point vibrations
to the cold component of the pressure P/(V'), which we estimate to be smaller than the error
bars in our computed stress tensors (see below). As a result, we have p.(V) = P.(V).

For a shock compressed process, both quantum and classical systems will satisfy the

Hugoniot relation:

1
B(V,T) = E(Ve, Ty) = 5(Vo = V)(P + R) ©
1
e(Vit) = e(Vo, To) = 5 (Vo = V) (p + Fo). (10)
Using equations 1 and 2, we can then expand equation 9 as the following:

I(V)Er(V,T)

Byl . (11
v + P . (11)

F(V) ~ BVo) + Ex(V,T) ~ Br(Vo, To) = 5(Vo— V) [P.(V) +

Expanding the cold energy E.(V) and the thermal energy Er(V,T) into their electronic

and ionic parts, and solving for E%(V,T), we obtain:

—E (V) + Ef (Vo) = BUV) + E{(Vo) + 5(Pe(V) + Po) (Vo — V) — EF(V,T) + Er(Vo, To)

EL(V,T) = :
(V1) [1 _ F(V)(Vo—V)}
2V
(12)
Similarly, for the classical system, we obtain:
; —B (V) + B (Vo) + 5(Pe(V) + Po) (Vo = V) = B#(V,T) + er(Vo, To)
er(V,t) = - (13)
[1 _ F(V)(Vo—V)]
2V
We then subtract Eqns. 12 and 13 to obtain the following relation for E4(V,T):
4 . E} Ty) — € Ty)] — [E! — E{(V,
E%(‘/a T) _ elT(‘/a t) + [ T(‘/U7 0) €T<VE)7 0)] [ c(v) c( 0)] (14)
(1 _ F(V)(Vo—V)>
2V
which we simplify to
Er(V,T) = ep(Vt) + AE(Ty, Vo; V), (15)

where AE(Ty, Vy; V) equals the second term on the right hand side of Eqn. 14.
In order to compute the values of the cold and thermal quantum ionic energies, E'(V)
and EL(V,T), we apply the quasi-harmonic approximation to the vibrational states of the

system. As a result, we write the cold ionic energies as:

5



1

(V) = /000 o, V)b doo, (16)

where p(w, V') is the vibrational density of states of the system, which we take to be the
power spectrum of the time dependent velocity autocorrelation function, viz., p(w,V)
Jo~ dr cos(w,T) (v(T)v(0)) / (v(0)?). We normalize p(w, V) to [;° dw p(w, V) = 3N4, where
N4 equals Avogadro’s Number.

Similarly, we write for E4(V,T) :

BLV.T) = [ dw Bl (. T), oY) 17)

where EgHO (w,T) is the average thermal energy of the quantum harmonic oscillator:

fuw

Bauo @ T) = Gmmor —1-

(18)

For a classical quasi-harmonic material, we have the standard expression for the thermal
ionic energy, ei(V,t) = 3Nkpt. The low frequency part of the vibrational spectrum (v <
T) for a molecular liquid exhibits nearly classical behavior. Hence, our quantum energy
correction will be significant only for the higher frequency, solid-like modes of the system,
consistent with the quasi-harmonic approximation.

We now relate E4(V,T) and e(V,t) by taking Eqns. 17 and 15 to form:

E%(V, T) = / dw Eg, o (w,T) p(w, V) = 3Nkt + AE(Tp, Vo; V). (19)
0

We can form an expression for the quantum correction to the thermal energy as a function

of frequency by solving for AE(Ty, Vo; V) and inserting classical energy into the integrand:

o0
ABE(Ty, Vi V) = /0 dw p(w, V) (MLT_l - k3t> (20)

Consequently, given the temperature of the quantum (7') and classical systems (t), we
can determine the contribution to the correction from specific vibrational modes for a given
shock compressed system.

Thus, determination of the Hugoniot quantum temperature proceeded as follows. Af-
ter calculation of the power spectrum, we use Eqns. 16 and 17 to determine the value of
AE(Ty, Vo; V). Values of I'(V') were computed by first performing two constant volume-
temperature (NVT) simulations at the Hugoniot temperature and at 200 K above for both
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the lowest and highest simulation densities for each system. I'(V) was then determined by
using the relation I'(V) = VOP/OE ~ VAP/AE. Values for water of I'(V) at densities
between the two extrema were computed via linear regression. Our approximation for I'(V)
is discussed further in the Results section, below. We then use Eqn. 19 to solve numerically
for the quantum Hugoniot temperature, which we label T;;. Since the power spectrum can
be calculated for any saved simulation trajectory, our technique can easily be applied to any
previously computed shock compression MD simulation.

It is possible to compute a quantum Hugoniot pressure correction from the definition
of the thermal pressure Pr, i. e., AP = I'(V)AE(Vy,Ty; V)/V. However, for all of our
simulations the values of AP were less than 1 MPa, i. e., three orders of magnitude smaller
than the error in the classically computed pressure. We have also estimated the contribution
of zero-point vibrations to the cold component of the pressure, P{(V) = —dE'(V)/dV, by

fitting our results for EX(V) to a simple functional form. Similarly, we find this quantum

pressure correction to be less than 1 MPa.

III. COMPUTATIONAL DETAILS

All shock compression simulations were conducted with the Multi-Scale Shock Technique
(MSST)!%:13:20-22 - MSST is a simulation methodology based on the Navier-Stokes equations
for compressible flow. Instead of simulating a shock wave within a large computational cell
with many atoms, the MSST computational cell follows a Lagrangian point through the
shock wave. This is accomplished by time-evolving equations of motion for the atoms and
volume of the computational of cell to constrain the stress in the propagation direction to

20,22 For a

the Rayleigh line and the energy of the system to the Hugoniot energy condition
given shock speed, these two relations describe a steady planar shock wave within continuum
theory. The MSST technique thus enables simulation of the shock wave with small system
sizes'?, making it possible to simulate with DFT or other computationally intensive force
fields. MSST has been used in conjunction with DF'T-MD to accurately reproduce the shock
Hugoniot of a number of systems'®!'*. MSST has also been shown to accurately reproduce
the sequence of thermodynamic states throughout the reaction zone of shock compressed

explosives with analytical equations of state??,

All of our DFT-MD simulations for water and methane were between 5-11 ps in length,



with an average drift from the Hugoniot energy condition of 0.5% or less. A fictitious box
mass of 3.5x10° a. u. and a wavefunction convergence criteria of 107% a. u. were used for
all simulations unless otherwise noted. Our simulations of shock compressed water have

4 For this system we performed simulations of

been discussed in a previous publication
the following shock velocities (km/s): 5, 6.5, 7.5, 9, 10, 11 using the CPMD simulation
software package?®. Stronger shock velocities resulted in electronic excitation beyond the
Born-Oppenheimer state, which requires the inclusion of electron thermal excitations?*25. In
these simulations we used a planewave cutoff of 120 Rydberg was used with the Becke-Lee-
Yang-Parr exchange-correlation functional?®?”. Tests with the PBE exchange-correlation
functional?® yielded consistent results over the pressure-temperature range of our calcula-
tions. An initial configuration of 64 HyO molecules was generated from an equilibrated
CPMD simulation conducted at 300 K with computational-cell lattice vectors of a = 19.72
A, b=9.86 A, and ¢ = 9.86 A. This corresponds to the ambient density of 1 g/cc, similar to
initial conditions of experiments?. Uniaxial compression of the shock wave occurred along
the a lattice vector. Convergence tests with up to 128 molecules showed that a system size
of 32 molecules provided sufficient convergence of the stress tensor for the shock compressed
configurations. Simulations at 10 and 11 km/s had an additional force convergence criteria
of 1077 a. u.

Our simulations of shock compressed methane were conducted with the CP2K mixed
basis set DFT simulation software suite3*3'. We simulated shock velocities of 11 and 12.2
km/s in order to match the small experimental data set for the methane shock temperatures
as closely as possible. For these simulations we used a planewave cutoff of 280 Ry and
an optimized TZVP basis set for both carbon and hydrogen, although we observed the
system energy and stress tensor to be converged with the smaller DZVP basis set. We
employed Goedecker-Teter-Hutter pseudopotentials®® with the PBE exchange correlation
functional?®. An initial configuration of CHy molecules was generated from an equilibrated
CP2K simulation conducted at 111 K with computational-cell lattice vectors of a = 25.06
A, b =12.53 A, and ¢ = 12.53 A. Uniaxial compression of the shock wave occurred along
the a lattice vector. These cell dimensions yield a density of 0.432 g/cc, similar to initial

conditions of experiments?334,



IV. RESULTS
A. Water

Our results for the Hugoniot temperature values for water are shown in Table I and
Fig. 1. We have shown excellent agreement of our simulations with experimental results for
the pressure vs. density equation of state of water!*. We find that our quantum mechanical
corrections bring our calculated temperatures in excellent agreement with experiment. Our
quantum Hugoniot temperatures provide excellent validation of DFT over a wide range of
thermodynamic conditions. Our results show that quantum nuclear vibrational effects play
a significant role in water even at elevated temperatures (> 4000 K).

Using the method for approximation for I'(V') mentioned above, we computed a values
of I' = 0.681 at 8.3 GPa (5 km/s) and I' = 0.355 at 67.8 GPa (11/kms). For comparison,
we compute values of I" from a recent equation of state for water?> of 0.990 and 0.400,
respectively. In order to examine the dependence of E7(V,T) on I', we can expand Eqn. 14

about I’y to first order to obtain the change in Er as a function of I':

AE(Vo, To; V) (Vo — V)(I' = Ty)
(QV) [1 . F()(V()—V)}2

AEp(T —Ty) = Ep(T) — Ep(ly) = + O*(T) (21)

2V

We then use our equation of state results for I' as an upper limit to obtain a 7.3%
difference in Er at 8.3 GPa and a 0.1% difference at 67.8 GPa. This results in a 5.4% and
0.1% change in the value of Tgyy, respectively. Thus, our results are relatively insensitive to
the chosen value of I', and our method for determining its value is valid for our simulations.

In order to quantify the quantum temperature correction from specific vibrational modes,
we have plot the results for AE(V;, Tp; V) from Eqn. 20 for our simulation at Ty = 584
K (Fig. 2). At frequencies below Tg)s, we observe that the difference between the classical
and quantum thermal energies is slightly positive. This is due to the fact that Ty, is
higher in value than the classical temperature, and the vibrational modes at these low
frequencies are mainly classical in nature, including the zero-frequency part of the power
spectrum due to self-diffusion. However, as the frequency increases above T, we observe a
significant correction due to the quantization of the vibrational energies. This confirms the

validity of our treatment of the liquid molecular vibrations with a quantum quasi-harmonic



approximation. Only the higher frequency modes above the system temperature experience
significant quantum effects.

The significant quantum Hugoniot temperature correction at high shock velocity (e. g.,
11 km/s) can be explained through examination of the computed power spectra (Fig. 3).
We observe that the vibron (O-H stretch mode) broadens significantly and red-shifts as a
function of increasing temperature and pressure due to a weakening of the O-H bonds. In
addition, the integrated intensity of the vibron peak at 4244 K (11 km/s) is approximately
70% of the value at ambient conditions, despite the high degree of dissociation of water under
these conditions'. This allows for an increased number of vibrational states to be accessed
by the system at higher pressure and temperature. The Ty value of water at 4244 K is
roughly equal to its Debeye temperature. As a result, low lying excited vibrational states
will have significant contributions to the heat capacity of the system at these conditions.
We calculate a quantum correction of 34.6% at a Ty, value of 584 K, which decreases to
a value of 16.1% at 4244 K. This is consistent with the requirement that the quantum heat

capacity must converge to the classical limit with increasing temperature.

B. Methane

We present the simulated Hugoniot values for methane in Table II and Figs. 4 and 5.
We use values of I" of 0.438 at 32.4 GPa (1 km/s) and 0.300 at 42.2 GPa (12.2 km/s). Our
simulations provide quantitative validation of the DFT-Generalized Gradient Approximation
equation of state for methane up to pressures up to ca. 42 GPa (Fig 4). The error in the
density is most likely much lower than that at ambient conditions*® due to the decreased
importance of van der Waals interactions at extreme conditions. Similar to water, we find
that inclusion of quantum nuclear vibrational effects results in notable improvement between
simulation and experimental results for the Hugoniot temperature (Fig. 5). Comparison of
power spectra at Ty values of 3244 K (32.4 GPa, 11 km/s) and 4059 K (42.2 GPa, 12.2
km/s) to that from the initial conditions (Fig 6) shows that the methane vibron (C H
stretch mode) broaden but red-shifts only slightly. This indicates that the C H bond is
not significantly weakened under the conditions of our simulations. The integrated intensity
of the vibron peak at both Ty, values of 3244 K and 4059 K is approximately equal to

the value at the initial conditions, consistent with minimal methane dissociation, discussed
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below. We observe that the Ty, values are approximately equal to the Debeye temperature,
in accordance with the significant computed quantum corrections to the temperature.
We have analyzed the chemical species present in our simulations using previously es-

1143738 Bond cutoff values 7,

tablished criteria for high pressure-temperature systems
were chosen based on the maximum of the potential of mean force, e. g., W(Rcy) =
—kpT In[g(Rey)]. We have chosen a value of r, = 1.25 A for C-H bonds in all of our
simulations. In addition, in order to avoid counting species that were entirely transient and
not chemically bonded?”, we also chose a lifetime cutoff of 25 fs (e. g., two oscillations of
a C—H bond vibration). This criteria is intuitive since C—H bonds with this lifetime could
conceivably be detected spectroscopically.

We do not observe any C-C or H-H bonding in our simulations, similar to tight-binding
studies at similar conditions'®. Previous DFT-MD simulations observed methane decompo-
sition at significantly higher pressures and temperatures®. At a Ty, of 3244 K, we observed
approximately 1% of the methane dissociated via a unimolecular mechanism, viz., CHy <
H*™ + CHj. The dissociation remains unimolecular and increases to 10% when the simu-
lation is shock compressed to 4059 K. This small degree of dissociation is consistent with
short-time scale shock compression experiment measurements of low electrical conductivity

of methane under these conditions*.

Diamond Anvil Cell experiments at orders of mag-
nitude longer time scales observe diamond formation at similar conditions'. The percent
change in our quantum corrected Hugoniot computed temperatures decreases from 32.5%
at 11 km/s to 25% at 12.2 km/s. Thus we observe that methane exhibits quantum correc-

tions to the Hugoniot temperature that are equivalent to differences between simulation and

experiment for water and other systems'?.

V. CONCLUSIONS

Our quantum Hugoniot temperature calculation method yields an improved agreement
between DFT-MD simulations and pyrometry experiments. Our results provide validation
of DFT with the Generalized Gradient Approximation for the high pressure-temperature
equation of state of both water and methane. We predict significant quantum corrections
to the Hugoniot temperatures of our simulations, due to quantization of the high frequency

vibron of covalently bonded systems such as water and methane. Our technique can be easily
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applied to any number of systems and can be used to decrease experimental uncertainties in
shock Hugoniot temperature measurements. Our quantum Hugoniot temperature method
can also be used in conjunction with MD simulations to compute experimental Hugoniot
temperatures where equation of state modeling is known to be inaccurate.

Prior to our submission, we were made aware of recent results from a somewhat similar
technique used to calculate the influence of quantum nuclear vibrational effects on the equa-

41 This technique differs from ours in that it requires calculation of

tion iof state of water
the mole fraction of non-dissociated water molecules and does not require explicit computa-
tion of the vibrational density of states. In particular, our method does not require explicit
determination of the species present in the simulation. However, their results show similarly

improved agreement to experiment for the Hugoniot tmeperatures.
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Table I: Table of final thermodynamic for our water shock compression simulations. Error bars

were determined by calculating the standard deviation over four time blocks.

Shock velocity (km/s) Pressure (GPa) Ter (K) Towm (K)
) 8.3 £ 0.1 434 £ 14 o84
6.5 182 £ 0.2 791 £ 7 1047
7.5 26.5 £ 0.4 1167 £ 4 1517
9 42.0 = 0.3 1995 + 8 2480
10 53.8 £ 0.3 2744 £+ 10 3292
11 67.8 £ 0.2 3654 + 6 4244

Table II: Table of final thermodynamic states for methane shock compression simulations. Error

bars were determined by calculating the standard deviation over four time blocks.

Shock velocity (km/s) Pressure (GPa) Density (g/cm?) Ter (K) Towm (K)
11 324 £ 04 1.12 +£ 0.01 2448 £+ 10 3244
12.2 42.2 £ 0.3 1.2 £ 0.01 3229 £+ 8 4059
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Figure 1: Plot of classical and quantum Hugoniot temperatures for water. Open circles correspond
to classical ionic temperatures, solid circles to quantum corrected temperatures, and open squares

to experimental results®.
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Figure 2: Plot of the difference between the quantum and classical thermal energies as a function

of frequency for water at Ty = 584 K (dashed line).
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Figure 3: Plot of the power spectra of water at the initial conditions (300 K; thick black line), and
quantum corrected temperatures Ty of 584 K (5 km/s; dotted line), and 4244 K (11km/s; thin

black line). The ‘+’ marks correspond to the Ty, values converted to wavenumbers.
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Figure 4: Plot of the pressure vs. density Hugoniot for CH4. The solid black circles correspond to
our results form CP2K, the open squares from Nellis et al.33 and the open triangles from Radousky

et al.?4
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Figure 5: Plot of the temperature vs. density Hugoniot for CH4. The open circles correspond
to the classical ionic temperature from CP2K, the solid black circles to the quantum corrected

temperatures, and the open sqaures with error bars to experimental results®*.
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Figure 6: Plot of the vibrational density of states of methane at the initial conditions (111 K; thick
black line), and Ty values of 3244 K (11 km/s; dotted line), and 4059 K (12.2 km/s; thin black

line). The ‘4’ marks correspond to the Ty, values converted to wavenumbers.
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